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Abstract—A porous structure with partial heating and evaporation on the upper surface is studied analyti-

cally. The liquid pressure and velocities are obtained by solving a Laplace-type equation for the porous

structure. A perturbation method is applied for the temperature distribution with higher heat inputs,

which consists of zeroth-order solution and a temperature correction. For the temperature correction, an

approximate solution is derived using an integral formulation. The analytical solution obtained is useful
for the evaporator performance and design of capillary pumped loops.

INTRODUCTION

A CAPILLARY porous structure with partial heating
and evaporation on the upper surface is shown in Fig.
1. The entire porous structure is saturated with liquid
from the bottom (y = 0), which is connected to a pool
for the liquid supply. Heat is applied over part of the
upper surface (0 < x < L) which is impermeable to
the fluid. The rest of the upper surface (L < x < L)
exposes liquid in the pores of the capillary structure
to the vapor space above. Heat is transferred from
the upper surface (0 < x < L,y to the liquid—vapor
interface where evaporation takes place. The side
walls (x = 0 and L) are adiabatic and impermeable.
The liquid is drawn from the bottom of the porous
structure and flows to the liquid-vapor interface due
to evaporation.

The porous structure described above is directly
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Fi1G. 1. Porous structure with partial heating and evaporation
on the upper surface.

related to the evaporator of capillary pumped loops
(CPL). A capillary pumped loop has the advantage of
transporting large amounts of heat over long distances
[1-3]. A commonly encountered problem is that
sufficient capillary pressures cannot be developed at
the evaporator during operation, which is needed to
circulate the working fluid through the CPL. As a
result, a two-phase accumulator or mechanicai pump
is often needed to assist the CPL operation. One of the
major causes of this problem is the boiling limitation
which occurs in the porous structure of the evap-
orator. Due to the special geometry of the CPL evap-
orator, the boiling limitation is more likely to occur
than in conventional heat pipes, which largely depends
on the temperature distribution in the porous wick,
especially at the wick/cover-plate interface. Also, it is
important to calculate the pressure drop in the wick
structure for the capillary limit consideration.

Liquid flow and heat transfer in the CPL is a very
complicated process which generally requires numeri-
cal simulations. Although the numerical simulation
has the advantages of being comprehensive and
general, the numerical coding is time-consuming and
the application of the numerical results is sometimes
difficult. On the other hand, a simple, approximate
analytical solution is ready to use and is more con-
venient for the CPL design. For this reason, approxi-
mate analytical solutions are obtained in the present
paper for the temperature distribution in the porous
structure. With this information, the boiling limitation
for the CPL can be determined. For most cases, a two-
dimensional model is appropriate for the temperature
distribution in the porous wick at the steady state.
Also, the temperature drop in the cover plate can be
neglected due to its high thermal conductivity. Due to
symmetry, a segment of the flat-plate evaporator can
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k. effective thermal conductivity,
equation (6) [Wm 'K ]

K wick permeability [m]

L, total length in x direction [m]

L, total length in y direction [m]

L. heating length on the upper surface [m]

Hi, vapor mass flux due to evaporation [kg
m “s']

P liquid pressure [N m 7]

Pr Prandtl number, v/x

g heat flux [Wm 7]

Re Reynolds number, 1;,2,/v;

N integral in equation (40)

s source term in equation (37)
T temperature [K]

T, temperature correction [K]

To zeroth-order temperature [K]
T temperature difference, T— T, [K]

u liquid velocity in x direction [m s ']
u*  dimensionless velocity in x direction
fe/esa]

NOMENCLATURE
o constant in equation (38) v liguid velocity in 1 direction {ms ']
a; constant in equation (38) et dimensionless velocity in y direction
Cp specitic heat [J kg "' K '] [£/t:0)
Ty, fatent heat of evaporation [J kg '} X, v coordinates {m]
k thermal conductivity [Wm 'K ] x*,r* dimensionless coordinates,

(x;L)/(RePr), (y/L,)/(RePr).

Greek symbols

2 thermal diffusivity {m* s~ ]
v liguid kinematic viscostty
(m*s ]

P density [kgm 7]
@ porosity.

Subscripts

eff  effective

i wick-vapor interface or initial
condition

in inlet

! liquid working fluid in the porous
structure

out  outlet

s solid matrix

v vapor.

be studied. Therefore. a flat-plate CPL evaporator can
be simplified to the situation shown in Fig. 1.

MATHEMATICAL FORMULATION

For the liquid flow in the porous structure, Darcy’s

law is applied [4]:
K ip
y-t (»— 5;) M

K C
== < - ‘_!Z) 2
u cy

where K is the wick permeability, and u and ¢ are
the area-averaged fluid velocities. The corresponding
continuity equation is

T
= () 3
T 3 0 (3

The energy equation for the porous wick is

u (z}. “+ v—iz = Wy (sz + ﬁf) 4)
ax ay axt oyt
The effective thermal diffusivity o.q is defined as
Fopr = Ko/ (3)
where
ke = ki + {1 — @)k, (6)

which is an aggregate property of the fluid-saturated
porous medium. {p,c,) is a property of the fluid only,
and ¢ is the wick porosity. In the above formulation,
itis assumed that the porous structure is homogeneous
and isotropic. It is also assumed that the solid matrix
is in local thermal equilibrium with the fluid filling the
pores, and the order of the local Reynolds number
based on the average velocity and K? does not exceed
unity.
The boundary conditions are:

x=0and y = L_:

cT
§ = 0’ o= 0 (7}
ox
y =0
== Uiy T= T‘m (8)
y=[Loand 0 < x <€ Ly
T
p =0, kcf((“ = {ffin ©)
oy

r=Land Lo<x <L,
ha]

cT
= Payts kat‘f ‘(:; = -(pv)ourhfg = = Gou- (10)

ANALYTICAL SOLUTION OF THE LIQUID FLOW

Combining equations (1)-(3), a Laplace-type equa-
tion is obtained [4]:
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azp azp
+-—=0 11
ox*  oy? (h
with boundary conditions:
x=0and x=L,:
2’3 =0 (12)
CX
y=0:
ép H
2= "k (13)
y=1L:
0 0 0 x<L,
L Osxsbod gy
ay _“vou\/K (fo <x< Lr)

Equations (11)—(14) can be solved by the method of
separation of variables [5]. The solution thus obtained
is

5 2L, (o,
pexy) = CO—L;(Uin)"{‘ Y 2L 10/ K)

m=1

. mmn
sin (— L_Yf>
L, mny mnx
x ————————cosh { —=}cos | ——
. mn L, L,
sinh L—L"

x

(mm)®

& 2L, (U
=Co—£l‘m}’+ Z _(_'u_z[/__.K_)
(mm)

K m=1
. [mnL mnx
X sin L cos L
xp| — = (L—y) |+ (L4
exp Lx( +— Y} | +exp L (L,+Y)

1—exp |:~2ngL_‘]
(15)

where C, is an arbitrary constant. Due to the bound-
ary conditions given in equations (12)—(14), the pres-
sure gradients are meaningful, but the absolute value
of the pressure is not meaningful. The velocities are
obtained by combining equations (1), (2), and (15).

Z 200w . [(MALy mn
v =0, y, ———sin|——]cos X
ey mm L, L,

exp [— an (L. —y)]—exp [— ? (L, +}’)J

mn
—L,
L.\ .‘}

X

X
1 —exp {——2

(16)

1527
o § 2 (b))
u -m=1 m S1 L_\. S1 LX X
M (L~ |+ T Loy
exp| — L b ») |+exp L.‘( c )
N ———————— V|

mn
— -2
1 exp[ 2T L‘J

ANALYTICAL SOLUTION OF THE ENERGY
EQUATION

The energy equation as well as the boundary con-
ditions are given by equations (4)-(10). By intro-
ducing the following parameters,

o XLe o VL gt
’ RePr’ RePr’ v
v
vt =—, Tt =T-T,,
Uin
Uin Ly Vi
Re=——, Pr= (18)
Vi Hetr
the energy equation is transformed into
al T+ A2 T+ ‘qTJr PT+
—— +L - = wt St - (RePr)*.
axt o oyt ox”* oyt
(19)

From equation (18), the parameter RePr is a com-
bination of properties of the working fluid and the
wick structure, which can be expressed as

vl v ptulicy

RePr =
keff

20

Vi Qegr

By making an energy balance over the whole porous
structure, we have

oT

qinL\'f + <_ ket‘f —;’T ' > Lv\» + Ui P Cpl Tin L_\.
S fr=0

= Uout P hfg (Li— L)+ Uout P1Cpl Tou (L, —Ly) (21)

where T, is the average temperature at the liquid—
vapor interface. Considering the mass balance
vinplLA\ = Uoulpl (L.Y_Lv\‘f') (22)

and substituting equation (22) into equation (21), we

have
) L.\’
=20

+Uinplcpl L,\' (Tou( - 7~m)

T

GinLy = vinpy L J1gg + (kerfafy

The sensible heat term in the above equation is
much smaller than the latent heat term, and can be
neglected.



T
(ImL\f = l‘lnplL\hfg + kcﬂ' }—T;‘ )L\- (23)
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Therefore,

_ Pitia L.y

Re Pr
k eft

T
= (gL — L ks —
(qm xf 1t (}y

)('pl /(/’r'g/\'eff)- (24)

v=0
Asa first approximation, neglect the heat flux at » = 0.

plmev\‘('pl ~ qinL.\’lt (Apl

Re Pr = X .
kcff h fg k eff

(25)

The parameter Re Pr is usually very small. For a
CPL evaporator with heat input and thermal proper-
ties of g, = 10° W m ™%, L, = 0.5 mm, ¢, = 2.0x 10"
Jkg "KL, =20x10"J kg ', and kyy =40 W
m~' K !, RePris on the order of 10 "*. Therefore, for
a small or moderate heat input, the term on the right-
hand side of equation (19) can be neglected. For
RePr = 0, equation (19) becomes

5

R )
Ty Ty

L= 26)
oxtr o Oyt? (
with boundary conditions
xT =0and L} :
0Ty
oy 27)
ox*
vt =0:
Te =0 (28)
yr=Lrand 0 < x* <L
0Ty _ L. RePrgn (29)
cyt ke
yhP=Lrand LT <x* < LT
05 __ LiRePrgu, o)
ovt Ky

The solution to the above equation and boundary
conditions is obtained by the method of separation of
variables.

x

. (mm
2Lv (qm +qout) sin _E L,\‘f

T¢xtat)= %

o=l

(mm)? ke
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L2L (Gt oud) i
=Y _,an an;})cos (LL v )
wet Amm) kg N L J
mn mn
exp I:AF(L;* *'1")] —exp | — — (L} +1 ')]
X :

(31)

For Re Pr # 0, an exact analytical solution is not
available. Since Re Pr is a small number, a per-
turbation method can be used [6]. The solution for
RePr # 0 can be expressed as

TH(x' ")y =T .0 )+ (Re Pry* T (xt . y™)

(32)

where T (x*, ¥") is the solution with RePr = 0, and
T (x*, v7) is the first-order solution associated with
(Re Pr)*. The terms with higher order of Re Pr have
been neglected due to the very small value of Re Pr.
Substituting equation (32) into equation (19), and
collecting the terms associated with (RePr)*, we have

DIT]:' (73T§ o (iTJ’ L o7y (33)
ox*te ooyt ox* v
with boundary conditions
xt=0andx* =L}
oTY
— =0 (34)
(x
=0
Ti=0 (35)
vi=L7
cT|
= 0. (36)
oy

Since the solutions for 7y and the velocities u* and
v* have been already obtained, the term on the right-
hand side of equation (33) is a source term.

cTy Ty
s(xt oy =ut — ot (37)
(‘:Y+ (‘31,+

However, this source term is a very complex function
of x* and y* due to the multiplication of the infinite
series for T, u*, and ¢v~. In general, numerical com-
putations are needed to solve the equation. Since the
equation is basically a heat-conduction type equation,
minimal numerical efforts are required for this prob-
lem. However, since the primary objective of this study
is to obtain analytical closed-form solutions, an
approximate method is applied. The solution for T, *
is approximated by the following relation.

_@Ly

_J,+3) L;—Z_'\,+2 2
““‘*2_—‘[‘#‘ — | a, +a, L‘*: .

(38)

+
1
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The above equation satisfies the boundary conditions
for T, equations (34)—(36). @, and a, are constants
to be determined. In this study, the integral for-
mulation is applied to determine the constants. The
differential equation (33) is integrated over the porous
structure.

A 62T§+€2T§>dx*dy'*
0 o ox*? 0}‘+-
Ll (o aTE 0T
= W O L 0 N qerdyt. (39)
) 0 Gx‘“ 6}‘+

Using the continuity equation (3), and the boundary
conditions for u*, v*, and 7§ (equations (7}, (9).
(10), and (28)), the integral source term on the right-
hand side of equation (39) is

NN Ty Ty
J (u“‘ — 2 +ot =2 dx*dy*

Jo o X (j’}’ N

oW TY) | A T
Joo Jo ox* oyt

S-:

It

] dx*dy*

(\L\\‘
= | et L) T L dxt

Jo

LN
ot Frwt 7+
= Vout \f\ TQ (*\ s Ly )dx

+
Lg

3
X

21—‘.\' (qm + ‘?Qut) Sinz (_’ZEE :})

£
_ +
= —low z

3
met [@E}] ks cosh (TE L} )
L; TAN

x sinh (—’ﬁ L} )
Ly

x

(40)

For the left-hand side of equation (39), applying
boundary conditions (34)—(36) gives

&TY

LY LY SO TE
Loy ——— jdx*dy?
o 0 8.\’)"2 G},ﬂ}‘

- J w_oTt
0 oy

dxt.
=0

4

Combining equations (38)—(41), a, is obtained as

2L . 8

ay = —EES“’“i—S‘az.

(42)
Another condition used to determine the constants
is that, at some specific points, the differential equa-
tion is satisfied. Since the highest temperature will
occur at the left upper corner of the porous structure,
the approximate relation is imposed to satisfy the
differential governing equation at that point.

1529
erE 2T Ty L Td
ox*?  gyt? ox* oyt
atx® =0andy* = L], (43)

Substituting equation {38) into equation (43) results

in
4 LF?
{qy = —-<I+‘3'L\”>(l3. (44)
From equations {(42) and (44), ¢, and a, are
40LF +30LTLIA)S
a;=~( ‘f ) 45
2L +60LF L}
1OLTLYS
ay, = __._7_1.__ -. (46)
TLE*+20L°
Therefore,
3L‘+ Zy+ __'},i-.?
TH{x*,y*)= (T—M)

N (40L7* +30L7 LIS
2117 +60LFL}?

0L LS [LiP—x*?\? @
CTLFEP420LFE\LY? )

The above approximate relation is not the only one
that may be derived for equations (33)~(36). In fact,
for a particular problem, one approximation may be
more convenient than another. The choice depends
on experience, the accuracy required in the solution,
and the complexity of the problem. The above solu-
tion can be improved at the cost of an involved analy-
sis. However, since T; is associated with (Re Pr)?, its
contribution to T is usually small, so an approximate
relation with reasonable accuracy is acceptable.

RESULTS AND DISCUSSION

Figure 2 presents the dimensionless liquid velocity
vectors in the porous structure, which were obtained
analytically from equations (16) and (17). The
geometry parameters and thermal properties for this
caseare: L, = 0.75mm, L, = 0.75mm, L., = 0.5 mm,
k=4 W m™ K7, eu=2x10"J kg™' K/,
hy =2x10°J kg™ 'and g, = 2x 10* Wm % Asa first
approximation, the heat flux at y = 0 is neglected, and
equation (25) is used in the calculation of RePr. This
makes both dimensionless parameters x* and y*
nearly 40. The liquid flows vertically into the porous
wick structure at y* = 0, and remains nearly one-
dimensional until reaching the middle section of the
porous structure. The liquid flow in the region
0 < xt < L% changes direction due to the upper
impermeable boundary and moves toward the liquid-
vapor interface region (L} < x* < L),
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Fii. 2. Dimensionless velocity vectors in the porous wick structure.

In order to check the accuracy of the approximate
solution for the temperature correction 7", equation
(33) and the boundary conditions (34)-(36) were
solved numerically using the control-volume finite
difference approach [7]. Numerical and approximate
solutions for the temperature correction T, atx ™’ = 0
and y* = 0.5L; are compared in Fig. 3. The agree-
ment between the two solutions is generally good.
In addition, both numerical and approximate tem-
perature correction results were substituted into equa-
tion {32), and the temperature solutions for the porous
structure thus obtained are compared in Fig. 4. As
can be seen, both solutions agree very well, and the
discrepancy between the two solutions is much smaller
than that of solutions for 7. Since RePr is a very
small number, little error from the approximate solu-
tion was carried through to the final solution for 7.

Yo 1n the analytical solution is calculated to be
Gow = GinLf (L.~ Ly} due to the neglection of heat
flux at »" =0,

Figure 5 shows temperature contours for 77 in the
wick structure. The maximum temperature occurs at
the upper left-hand corner, and gradually decreases to
the minimum at the upper right-hand corner. Figure 6
shows analytical 7" and T, at x* = 0 for different
heat inputs ¢,. Both temperatures increase sig-
nificantly with higher heat input. Also, 7" departs
from Ty when the heat input is high. Since the iquid
velocity in the porous structure is directly related to
the heat input, a higher heat flux means a higher
liquid flow velocity. 7 differs from 7" in that the
convective terms are neglected in the governing equa-
tion for T,/ A higher T than Ty is due to the liquid
flow in the porous structure. For the present porous

80 2
} C Approximate, x* = 0
4 Numerieal, x'=0_ © Analytical x* =0
+ Approximate, y* = 0.5Lf + e A Numerical, x* =0 _
% Numerigal, y* = 05L7 ! + Analytical, y* = 0.51%
40 /,:’/// o 1 X Numerical, y* = 0, §L*
Fo. e :
ot e ,// e
" e - X
f— - P R
20+ ,// o-e - =
y \\_%\
" s g
O T T 1 -1 T T ¥ i i
0 8 16 24 32 40 0 8 18 24 32 40
x*, ¥t x*, vt

FiG, 3. Comparison of numerical and approximate tem-
perature corrections at x* = Qand p' = 0.5L}.

Fig. 4. Comparison between numerical and approximate
temperature solutions at x” = Oand y* = 0.5L].
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T+, T}

0 0.2
y*/Ly

F1G. 6. Analytical 7" and T at x* = 0 for different ¢;,.

structure, liquid flows upward while heat flows down-
ward in the region close to x* = 0. The net effect of
these two processes is to increase the temperature in
this region. Figure 7 shows analytical solutions of T+
and T aty* = L} for the same heat fluxes examined

10
54 \Q‘\\{*\x
‘E"_'O b e — \\{‘\
o 0P N
= N —
O T* q =104 (W/m?
1 o ThLa=10"wmd)
+ T2, q = 5x10¢ (W/m?)
+ = 4 2
—t0d x Tha=5x0 Wmd)
© 105 (Wm?)
v Tf g= 105 (W/m¥)
-15 T T , ;
0 0.2 0.4 0.6 0.8 1
x*/LE

F1G. 7. Analytical T+ and T,/ at y* = L for different ¢,,.

in Fig. 6. The temperature 7% with convective terms
is also consistently higher than T without convective
terms. However, the absolute value of T* in the
region L} < x* < L} is smaller than that of T . In
this region, heat fluxes begin to change direction, and
eventually flow in the same direction as the liquid
velocity. As a result, the temperature difference
between the inlet and the evaporating liquid—vapor
interface is reduced.

Figure 8 shows the analytical solutions of the tem-
perature 77 at x* =0 and y* = L} for different
effective thermal conductivities. The effective thermal
conductivity has a pronounced effect on the tem-
perature distributions in both directions. As the effec-
tive thermal conductivity is reduced, the absolute
value of T at the upper surface increases sharply.

For the previous results, the working fluid was con-

= tW/(m-K},

3
Ker =4 Mm-K)_L* =Ly
k

=t

~-10 T T T
0 0.2 044 0.6 0.8 1
x*/LE, vt /L
Fi16. 8. Analytical T at y* = L} and x" = 0 for different

effective thermal conductivities (¢, = 2 x 10 W m~?).
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FiG. 9. Analytical T at x* = 0 for different working fluids

(g = 10°Wm™7)

sidered to be Freon-113. Figure 9 shows analytical
solutions of 7* at x* = 0 for different working fluids
with g, = 10° W m 2. The temperature with Freon-
113 is relatively higher than that with ammonia or
water. For Freon-113, the latent heat of evaporation
hy 18 on the order of 10° J kg ', while those of
ammonia and water are on the order of 10°J kg .
The liquid mass flow rate is directly related to the
latent heat, /iy, = ¢;,/h,. With the same heat input, the
liquid mass flow rate for Freon-113 in the porous
structure is considerably higher than that for
ammonia or water. Therefore, the temperature T+ for
Freon-113 is accordingly higher.

In the above calculations, the heat flux at y* =0
has been neglected. In order to validate this assump-
tion, equation (24) is used to calculate RePr, in which
the heat flux at y' =0, ¢, = —kg(¢T/OV)|, 0. 18
obtained by iteration. ¢, is first calculated using the
solution based on the assumption ¢, = 0. If | ¢, | is
zero, the assumption is valid. If | ¢, | # 0, equation
(24) is used to calculate RePr, and g, is calculated
by the energy balance

oT
<‘Im Ly — Likey e

} s 0)

An analytical solution can be obtained based on the
values of RePr and ¢,,, given. Then, a new ¢, based
on this solution is obtained. If the relative difference

(43)

Gour = (L.=L.)

FiGg. 10. Comparison of solutions with and without the
assumption of g, = 0 for different geometric parameters at
yt=Lr
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F1G. 11. Analytical solutions of T at p* = L for different

geometric parameters (Q,, = 10 Wm ')

between the new ¢, and previous ¢, is greater than
10 %, another iteration is made until the criterion is
satisfied. Only a very few iterations are needed for
the above procedure, and analytical solutions thus
obtained are presented in Fig. 10 at y' = L} with
different L}'/L}, and compared with the cor-
responding solutions with the assumption of ¢, = 0.
For larger values of L,/L;, the difference between
the solutions with and without ¢, = 0 is negligibly
small. For small values of L;/L}, however, large
errors may result for the solution based on the
assumption ¢, = 0. For the case of L'/L; = 0.6,
more than half of the total heat input is transferred out
of the porous structure through the surface y~ = 0.

Figure 11 presents analytical solutions of 7~ at
y* =LY from different geometric parameters. The
total heat input @,, = ¢,.L.; is held constant at 10 W
m~', L, is fixed at 0.75 mm, and L, /L is kept con-
stant at 1.5. Upon varying L}/L] from 0.5 to 0.8, it
can be seen that the temperature distribution is some-
what sensitive to this parameter, and a small L /L}
results in a higher temperature at x™ = 0. A smaller
L}/L} in this case means a small L. Since the total
heat input Q,, is kept constant, a small L, means a
higher heat flux in the region 0 < x < L. Therefore,
the temperature at x = 0 is accordingly higher.

CONCLUSIONS

Analytical solutions for liquid pressures, velocities
and temperature in the porous structure were
obtained. The approximate solution for the tem-
perature correction was compared with the cor-
responding numerical results with reasonable agree-
ment. The accuracy of the analytical temperature
relation obtained was also examined, and it was shown
that the temperature field in the porous structure can
be accurately predicted. A parametric study for the
porous structure was then presented, and the con-
dition under which the assumption ¢, = 0 can be made
was given. For the thermal design of capillary pumped
loops, the boiling limit is one of the primary concerns,
which is largely dependent on the highest temperature
at the upper left-hand corner of the wick structure.
Also, for a given wick structure and working condi-
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tions, it is desirable to know the pressure drop over
the structure for the capillary limit consideration. The
analytical relations obtained in this paper provide a
useful tool to deal with these problems.
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